TORIC IDEALS OF MATCHING POLYTOPES AND GRAPH COLORING THEORY

KENTA MORI

This talk is based on joint work with Ryo Motomura, Hidefumi Ohsugi, and Akiyoshi Tsuchiya [6].

In this talk, we discuss a relationship between an algebraic property of toric ideals arising from graphs and a combinatorial property of edge colorings of multigraphs. Throughout this talk, we assume that a graph is simple, namely, it has no loops and no multiple edges and, a multigraph has no loops. Let G be a graph with the vertex set $V(G) = [d] := \{1, 2, ..., d\}$ and the edge set $E(G) = \{e_1, ..., e_n\}$. A matching of G is a set of pairwise non-adjacent edges of G, and a perfect matching of G is a matching that covers every vertex of G. Let M(G) (resp. PM(G)) denote the set of all matchings (resp. perfect matchings) of G. Given a subset $M \subset E(G)$, we associate the (0,1)-vector $\rho(M) = \sum_{e_j \in M} \mathbf{e}_j \in \mathbb{R}^n$. Here \mathbf{e}_j is the jth unit coordinate vector in \mathbb{R}^n . For example, $\rho(\emptyset) = (0, ..., 0) \in \mathbb{R}^n$. Then the (full) matching polytope \mathcal{M}_G of G is defined as the convex hull

$$\mathcal{M}_G = \operatorname{conv} \{ \rho(M) : M \in M(G) \}$$

and the *perfect matching polytope* \mathscr{P}_G of G is defined as

$$\mathscr{P}_G = \operatorname{conv} \left\{ \rho(M) : M \in PM(G) \right\}.$$

Note that \mathscr{P}_G is a face of \mathscr{M}_G . Moreover, the perfect matching polytope of a complete bipartite graph $K_{d,d}$ is called the *Birkhoff polytope*, denoted by \mathscr{B}_d .

Next, we introduce toric rings and toric ideals. Let $\mathscr{P} \subset \mathbb{R}^d_{\geq 0}$ be a lattice polytope with $\mathscr{P} \cap \mathbb{Z}^d_{\geq 0} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ and let $\mathbb{K}[\mathbf{t}, s] := \mathbb{K}[t_1, \dots, t_d, s]$ be the polynomial ring in d+1 variables over a field \mathbb{K} . Given a nonnegative integer vector $\mathbf{a} = (a_1, \dots, a_d) \in \mathbb{Z}^d_{\geq 0}$, we write $\mathbf{t}^{\mathbf{a}} := t_1^{a_1} t_2^{a_2} \cdots t_d^{a_d} \in \mathbb{K}[\mathbf{t}, s]$. The *toric ring* of \mathscr{P} is

$$\mathbb{K}[\mathscr{P}] := \mathbb{K}[\mathbf{t}^{\mathbf{a}_1} s, \dots, \mathbf{t}^{\mathbf{a}_n} s] \subset \mathbb{K}[\mathbf{t}, s].$$

We regard $\mathbb{K}[\mathscr{P}]$ as a homogeneous algebra by setting each $\deg(\mathbf{t}^{\mathbf{a}_i}s)=1$. Let $R[\mathscr{P}]=\mathbb{K}[x_1,\ldots,x_n]$ denote the polynomial ring in n variables over \mathbb{K} with each $\deg(x_i)=1$. The *toric ideal* $I_{\mathscr{P}}$ of \mathscr{P} is the kernel of the surjective homomorphism $\pi:R[\mathscr{P}]\to\mathbb{K}[\mathscr{P}]$ defined by $\pi(x_i)=\mathbf{t}^{\mathbf{a}_i}s$ for $1\leq i\leq n$. Note that $I_{\mathscr{P}}$ is a prime ideal generated by homogeneous binomials. The toric ring $\mathbb{K}[\mathscr{P}]$ is called *quadratic* if $I_{\mathscr{P}}$ is generated by quadratic binomials. For a homogeneous ideal I, let $\omega(I)$ denote the maximal degree of minimal generators of I. We say that " $I_{\mathscr{P}}$ is generated by quadratic binomials" even if $I_{\mathscr{P}}=\{0\}$. In particular, $\omega(I_{\mathscr{P}})\geq 2$ and $\omega(\{0\})=2$.

In [4], it was conjectured that the toric ideal $I_{\mathcal{B}_n}$ of the Birkhoff polytope \mathcal{B}_n is generated by binomials of degree at most 3, and this conjecture was shown in [7]. Moreover, in [5], by using this result, the toric ideal of a flow polytope is generated by binomials of degree at most 3. For a homogeneous ideal I, let $\omega(I)$ denote the maximal degree of minimal generators of I. Since the matching polytope of a bipartite graph is unimodularly equivalent to a flow polytope, the following result holds:

Theorem 1 ([5]). For a bipartite graph G, one has $\omega(I_{\mathcal{M}_G}) \leq 3$.

Next, we recall edge-colorings of multigraphs. Let G be a multigraph. For a k-edge-coloring f of G and a color $1 \le j \le k$, let $M^{(e)}(f,j)$ denote the set of all edges of color j. We say that two k-edge-colorings f and g of G differ by an m-colored subgraph if there is a set of colors S of size m such that $M^{(e)}(f,j) \ne M^{(e)}(g,j)$ for each $j \in S$, but $M^{(e)}(f,j) = M^{(e)}(g,j)$ for each $j \notin S$. For two k-edge-colorings f,g of G, we write $f \sim_r g$ if there exists a sequence f_0, f_1, \ldots, f_S of k-edge-colorings of G with $f_0 = f$ and $f_S = g$ such that f_i differs from f_{i-1} by a k_i -colored subgraph with $k_i \le r$. Note that $f \sim_r g$ implies $f \sim_{r+1} g$.

In [1, 2, 3], the following result was shown:

Theorem 2 ([1, 2, 3]). Let G be a bipartite multigraph. Then for any k-edge-colorings f and g of G, one has $f \sim_3 g$.

For a simple graph G on [d] with $E(G) = \{e_1, e_2, \dots, e_n\}$ and $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{Z}_{\geq 0}^n$, let $G_{\mathbf{a}}^{(e)}$ be the multigraph on [d] such that $G_{\mathbf{a}}^{(e)}$ has a_i multiedges e_i for each i. We call $G_{\mathbf{a}}^{(e)}$ the *edge-replication multigraph* of G on \mathbf{a} . Then our main result is the following:

Theorem 3. Let G be a graph with n edges. Then $\omega(I_{\mathcal{M}_G}) \leq r$ if and only if for any $\mathbf{a} \in \mathbb{Z}^n_{\geq 0}$ and for any k-edge-colorings f and g of $G_{\mathbf{a}}^{(e)}$, one has $f \sim_r g$.

Since any edge-replication multigraph of a simple bipartite graph is bipartite, Theorems 1 and 2 are equivalent from this theorem.

On the other hand, we give a characterization of a bipartite graph such that $\omega(I_{\mathcal{M}_G})=2$, i.e., $I_{\mathcal{M}_G}$ is generated by quadratic binomials. In fact,

Theorem 4. Let G be a bipartite graph. Then the following conditions are equivalent:

- (i) $\omega(I_{\mathcal{M}_G}) = 2$;
- (ii) G has no odd subdivision of $K_{2,3}$ as a subgraph;
- (iii) each block of G is a bipartite graph having no odd subdivision of $K_{2,3}$ as a subgraph. Otherwise, one has $\omega(I_{\mathcal{M}_G}) = 3$.

REFERENCES

- [1] A. S. Asratian. Short solution of Kotzig's problem for bipartite graphs. *J. Combin. Theory Ser. B*, 74(2):160–168, 1998.
- [2] A. S. Asratian. A note on transformations of edge colorings of bipartite graphs. *J. Combin. Theory Ser. B*, 99(5):814–818, 2009.
- [3] A. S. Asratian and A. N. Mirumyan. Transformations of edge colorings of a bipartite multigraph and their applications. *Dokl. Akad. Nauk SSSR*, 316(1):11–13, 1991.
- [4] Persi Diaconis and Nicholas Eriksson. Markov bases for noncommutative Fourier analysis of ranked data. *J. Symbolic Comput.*, 41(2):182–195, 2006.
- [5] Mátyás Domokos and Dániel Joó. On the equations and classification of toric quiver varieties. *Proc. Roy. Soc. Edinburgh Sect. A*, 146(2):265–295, 2016.
- [6] Kenta Mori, Ryo Motomura, Hidefumi Ohsugi, and Akiyoshi Tsuchiya. Toric ideals of matching polytopes and edge-colorings. arXiv:2501.19209.
- [7] Takashi Yamaguchi, Mitsunori Ogawa, and Akimichi Takemura. Markov degree of the Birkhoff model. *J. Algebraic Combin.*, 40(1):293–311, 2014.