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This talk is based on joint work with Ryo Motomura, Hidefumi Ohsugi, and Akiyoshi Tsuchiya
[6].

In this talk, we discuss a relationship between an algebraic property of toric ideals arising from
graphs and a combinatorial property of edge colorings of multigraphs. Throughout this talk, we
assume that a graph is simple, namely, it has no loops and no multiple edges and, a multigraph
has no loops. Let G be a graph with the vertex set V (G) = [d] := {1,2, . . . ,d} and the edge set
E(G) = {e1, . . . ,en}. A matching of G is a set of pairwise non-adjacent edges of G, and a perfect
matching of G is a matching that covers every vertex of G. Let M(G) (resp. PM(G)) denote the
set of all matchings (resp. perfect matchings) of G. Given a subset M ⊂ E(G), we associate the
(0,1)-vector ρ(M) = ∑e j∈M e j ∈ Rn. Here e j is the jth unit coordinate vector in Rn. For example,
ρ( /0) = (0, . . . ,0) ∈ Rn. Then the (full) matching polytope MG of G is defined as the convex hull

MG = conv{ρ(M) : M ∈ M(G)}
and the perfect matching polytope PG of G is defined as

PG = conv{ρ(M) : M ∈ PM(G)} .
Note that PG is a face of MG. Moreover, the perfect matching polytope of a complete bipartite
graph Kd,d is called the Birkhoff polytope, denoted by Bd .

Next, we introduce toric rings and toric ideals. Let P ⊂ Rd
≥0 be a lattice polytope with P ∩

Zd
≥0 = {a1, . . . ,an} and let K[t,s] := K[t1, . . . , td,s] be the polynomial ring in d +1 variables over

a field K. Given a nonnegative integer vector a = (a1, . . . ,ad) ∈ Zd
≥0, we write ta := ta1

1 ta2
2 · · · tad

d ∈
K[t,s]. The toric ring of P is

K[P] :=K[ta1s, . . . , tans]⊂K[t,s].

We regard K[P] as a homogeneous algebra by setting each deg(tais)= 1. Let R[P] =K[x1, . . . ,xn]
denote the polynomial ring in n variables over K with each deg(xi) = 1. The toric ideal IP of P is
the kernel of the surjective homomorphism π : R[P]→K[P] defined by π(xi) = tais for 1≤ i≤ n.
Note that IP is a prime ideal generated by homogeneous binomials. The toric ring K[P] is called
quadratic if IP is generated by quadratic binomials. For a homogeneous ideal I, let ω(I) denote the
maximal degree of minimal generators of I. We say that “IP is generated by quadratic binomials”
even if IP = {0}. In particular, ω(IP)≥ 2 and ω({0}) = 2.

In [4], it was conjectured that the toric ideal IBn of the Birkhoff polytope Bn is generated by
binomials of degree at most 3, and this conjecture was shown in [7]. Moreover, in [5], by using
this result, the toric ideal of a flow polytope is generated by binomials of degree at most 3. For a
homogeneous ideal I, let ω(I) denote the maximal degree of minimal generators of I. Since the
matching polytope of a bipartite graph is unimodularly equivalent to a flow polytope, the following
result holds:

Theorem 1 ([5]). For a bipartite graph G, one has ω(IMG)≤ 3.



Next, we recall edge-colorings of multigraphs. Let G be a multigraph. For a k-edge-coloring f
of G and a color 1 ≤ j ≤ k, let M(e)( f , j) denote the set of all edges of color j. We say that two
k-edge-colorings f and g of G differ by an m-colored subgraph if there is a set of colors S of size
m such that M(e)( f , j) ̸= M(e)(g, j) for each j ∈ S, but M(e)( f , j) = M(e)(g, j) for each j /∈ S. For
two k-edge-colorings f ,g of G, we write f ∼r g if there exists a sequence f0, f1, . . . , fs of k-edge-
colorings of G with f0 = f and fs = g such that fi differs from fi−1 by a ki-colored subgraph with
ki ≤ r. Note that f ∼r g implies f ∼r+1 g.

In [1, 2, 3], the following result was shown:

Theorem 2 ([1, 2, 3]). Let G be a bipartite multigraph. Then for any k-edge-colorings f and g of
G, one has f ∼3 g.

For a simple graph G on [d] with E(G) = {e1,e2, . . . ,en} and a = (a1, . . . ,an) ∈ Zn
≥0, let G(e)

a

be the multigraph on [d] such that G(e)
a has ai multiedges ei for each i. We call G(e)

a the edge-
replication multigraph of G on a. Then our main result is the following:

Theorem 3. Let G be a graph with n edges. Then ω(IMG)≤ r if and only if for any a ∈ Zn
≥0 and

for any k-edge-colorings f and g of G(e)
a , one has f ∼r g.

Since any edge-replication multigraph of a simple bipartite graph is bipartite, Theorems 1 and 2
are equivalent from this theorem.

On the other hand, we give a characterization of a bipartite graph such that ω(IMG) = 2, i.e.,
IMG is generated by quadratic binomials. In fact,

Theorem 4. Let G be a bipartite graph. Then the following conditions are equivalent:
(i) ω(IMG) = 2;

(ii) G has no odd subdivision of K2,3 as a subgraph;
(iii) each block of G is a bipartite graph having no odd subdivision of K2,3 as a subgraph.

Otherwise, one has ω(IMG) = 3.
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